M \WATCHME

Workplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of sys-

tems and components

Delivery month Annex | 10
Actual delivery month 10

Lead participant: Work package: Nature: R Dissemination level: PU
Jayway 5
Version: 1.0

Pro'lect coordinator

Dr. Marieke van der Schaaf

Utrecht University

Faculty of Social and Behavioral Science
Department of Education

PO Box 80.140

3508TC Utrecht

The Netherlands

Telephone: +31 (0)30 253 4944
Email: M.F.vanderSchaaf@uu.nl

This project has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under
grant agreement no 619349.

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Table of contents

1. EXeCutive SUMMANY ... 3
2. INErodUCEION ... e 3
2.0 GlOSSAIY ..ttt e e e e e e e e e 3
2.2 Background & scope of the deliverablec..oooiiiiiiiiiii 4
3. Common ArchiteCture........ooiiiiieerri s 5
3.1 UL level iNtegrationcoiiiiiiiiiiiiiiie e 6
3.2 APl level iNtegrationcooiiiiiiiiiiiiiiiiii 8
3.3 SECUMLY & PrIVACY ... 12
4, JIT/VIZ API deScCriptionccceeeeiiniiiiiiiiiiii s rss s s s s s nnnnsnnns 12
I I I =T T o= PRSPPI 13
VA VA (=Y To TN o Y T USSP 14
5. EPASS integration...........iiiie s 16
5.1 GUIINTEGIatioN ...cooi i 17
5.2 APLINIErationcouiiiiiiiiiiiiiiiiii 21
6. Student Model integrationccccooiiiiiiiiiinrnr s 21
7. 0o 3 T3 11 =3 T o P 23
8. [T =] =Y g T o = 24
9. Tables and FiguIes........cuuiieeeicrirnisss s nnnnnnnns 24
9.1 List Of tADIES ...ceeeeeieeeeeeeeeeeeeeeeee e 24
9.2 LISt Of fIQUIES ..ceeeiiiiieeeieeeeeeeeee e 24
10. History of the document ... ———— 25
10.1 DOCUMENT NISTOMY ...ttt e et e e e e e e e e e eeeeeeeeees 25
10.2 Internal reVIEW NISTOIYuuuiiiiiiiiiiiiiiiii it e e e e e e e e e eeeeeees 25

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

This deliverable describes the proposed architecture for integrating the just-in-time
feedback (JIT) and visualisation (VIZ) modules within the overall WATCHME system
landscape, the major actors of which are outlined in Figure 1 below:

embeds - 4
visualisations from
interacts -=" L
—— D -7 bases visualisations
with < on data from |
end user EPASS N [
N |
/\ \elpbeds :
[feedback from |
| N |
| N
leams from | N \:/
data from - ~ N
AN
N\
< -———-————————-
determines relevant
SM feedback using JIT

Figure 1: Overview of WATCHME system landscape

Specifically, this deliverable presents:
¢ TheJIT/VIZ interaction with the student model (SM)
¢ The JIT/VIZ interaction with the electronic portfolio and assessment support sys-
tem (EPASS)

The intended audience of this document are software architects and developers wanting
to integrate the just-in-time and/or visualisation modules of the WATCHME project into
their solutions, including - but not limited to - electronic portfolio systems such as
EPASS.

Table 1 defines central terms and abbreviations used within this document.

Table 1: Glossary of terms

Term Explanation

API Application Programming Interface

EPASS Electronic Portfolio and Assessment Support System
JIT Just-in-Time feedback module

SM Student Model

Ul User Interface

VIZ Visualisation module

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

In accordance with requirements (cf. deliverable 3.1) and overall system architecture
(cf. deliverable 3.2), this deliverable provides the detailed design of the interaction of
both modules (JIT and VIZ) with the electronic portfolio system and the student-model
module. Four separate interactions are specified:

* JIT/EPASS interaction: This involves the specification of how integration of JIT in-
to the electronic portfolio user interface will be realised, and what data has to be
exchanged between the e-portfolio system and the JIT module.

* VIZ/EPASS system interaction: This involves the specification of how integration
of VIZ in the electronic portfolio user interface will be realised, and what data has
to be exchanged between the e-portfolio system and the VIZ module.

¢ JIT/SM interaction: This involves the specification of applied communication pro-
tocol and data exchange during a request for feedback from the student model to
the JIT module, either directly or through the e-portfolio system.

e VIZ/SM interaction: This involves the specification of applied communication
protocol and data exchanged during the collection of data to be visualised.

As the requirements process is on-going beyond the date of this delivery, this delivera-
ble describes the general integration mechanisms, but leaves open details specific to
particular JIT/VIZ representations. These details will emerge through the development
of the JIT/VIZ modules, and be documented as part of the report deliveries 5.2 (JIT) and
5.4 (VIZ).

A number of goals and constraints not directly attributable to the initial WATCHME pro-
ject work plan, but identified through dialogue between the technical partners, influence
the architecture significantly:
* The JIT/VIZ modules must integrate naturally within the existing, web-based
EPASS system.
¢ The JIT/VIZ modules should be embeddable within other portfolio systems and
therefore not be tightly coupled to EPASS.
* The JIT/VIZ modules should support mobile devices, e.g. by gracefully degrading
to simpler/less interactive visualisations.
¢ The JIT/VIZ modules should allow for additional types of visualisation or feed-
back to be implemented (e.g. to support specific needs of different application
domains) post WATCHME.
* The architecture should allow EPASS and SM to evolve independently from the
JIT/VIZ modules.

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Although the information provided by the JIT and VIZ modules differs, they share the
trait that they need to be embedded into a hosting application, such as an electronic
portfolio management system.

Consequently, the integration architecture for embedding said modules into a host ap-
plication is shared between the JIT and VIZ modules. At the highest level, JIT and VIZ
aspects are separated into three tiers, with external integrations taking place at the up-
per and lower tiers.

Figure 2 below gives a logical view of these tiers, with integrating artefacts (outside the
scope of this deliverable) marked blue.

Presentation tier |

«host» «embedded»
Portfolio System Ul o~ JIT/VIZ Ul

]
|
/ |
|
|
|

Logic tier |

7 v
«embedded» «rest api»
JITIVIZ Client JITIVIZ Server

Side Logic Side Logic

Data tier |
vV
«rest api» @ «rest api» «rest api»
Portfolio System API - _ JITIVIZ | _ > SM API

DataSource API

Figure 2: Logical tiered view of integration architecture

This separation into tiers is technology-agnostic, with the constraint that the JIT/VIZ Ul
and client side logic embedded into a host must be implemented using a technology
compatible with the host. E.g. using JavaScript and HTML would be a natural choice for a
web-based host. For a host on a mobile device, a browser-based host is also an option, or
a native platform implementation technology such as Java or Objective-C could be ap-

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

plied. Alternatively, a hybrid approach based on an embedded web view in a native ap-
plication is also an option.

Below, in Figure 3, this is illustrated by placing the artefacts of the three tiers according
to an abstract deployment perspective grouped by independent technology stacks:

Host Frontend Technology Stack

Web Server
‘_‘hOSt» @ «embedded» @ «rest api»
Portfolio System Ul | _ — uimvizul ——|q-—— -1 =3 Jmviz server

B v Side Logic

- [

-1 |
VT V
. «rest api»
«Ilbrary_» @ JITVIZ
JIT/IVIZ Client
. i DataSource API
Side Logic
I
N]
Ve |
4 I
Ve
pZ |
/]
b t i
Host Backend Technology Stack Student Model Telk:hnology Stack
s/
yi
«integration» sintegratigyly
. SM API

Portfolio System API

Figure 3: Logical deployment view of integration architecture

The approach to integrating both visualisations from VIZ and feedback from JIT into the
portfolio system Ul is to embed JIT/VIZ specific artefacts into the host Ul

From a structural perspective, this means:

* Referencing JIT/VIZ specific code from the host (e.g. JavaScripts in the page
HTML if the host is web based, or e.g. Java JAR files if the host were based a mo-
bile Android application)

* Embedding JIT/VIZ content placeholders in the host Ul (e.g. HTML DIVs if the
host is web based, or e.g. native Views/Fragments if the host were a mobile An-
droid application)

* For interactive content, embedding JIT/VIZ affordances in the host Ul (e.g. but-
tons and selectors) for obtaining user input to visualisations or feedback

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Figure 4 provides the structural view of the different Ul components and their integra-
tion. JIT/VIZ Ul affordances are modelled as JIT/VIZ controls respectively, and content
placeholders as JIT/VIZ canvases. Canvases can serve as controls themselves, to support
visualisation/feedback scenarios where the user can interact directly with the content
on the canvas, without external affordances. The JIT/VIZ controllers mediate between
the Ul affordances and the canvases. Each canvas has exactly one controller instance, but
an instantiation-time choice can be made between several variants of controllers for a
specific visualisation/feedback item, e.g. to gracefully degrade from an advanced version
of a visualisation to a simpler version on legacy web browsers. An open number of con-
trols can supply user input to the controllers, depending on the needs of a specific visu-
alisation/feedback item.

«embedded»
VIZ Control

+ parameters

0.

«embedded»
VIZ Canvas

«embedded»
VIZ Controller

parameters + parameters

«host»
Portfolio System
Screen

«embedded»
JIT Controller

«embedded»
JIT Canvas

parameters

+ parameters

0.*

«embedded»
JIT Control

+ parameters

Figure 4: Structural view of Ul integration architecture

Each artefact can be parameterised with contextual information such as user identifica-
tion/session token, data sources and any instance specific configuration specific to a
visualisation/feedback item.

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

The following table summarises the responsibilities of the artefacts in Figure 4:

Table 2: Responsibilities of main Ul integration artefacts

Artefact

EPASS Page
VIZ Controller

VIZ Canvas

VIZ Control
JIT Controller

JIT Canvas

JIT Control

Responsibility

Main user interface unit.

Visualisation specific mediator between canvas, controls and visuali-
sation logic.

Display of actual visualisation. Could be a container of DOM/SVG ele-
ments manipulated by the controller for advanced or interactive visu-
alisations, or a simple bitmap container for simple visualisations.
Optionally providing user adjustable input to the controller, allowing
the visualisation to reflect that without doing a page reload.

Feedback specific mediator between canvas, controls and just-in-time
logic.

Display of feedback. Could be a container of CSS-styleable HTML
markup for textual/in-portfolio system linking or of VIZ components if
the feedback is a visualisation.

Optionally providing user adjustable input to the controller, allowing
the feedback to reflect that without doing a page reload.

The integration has 2 modes, described in Table 3. Each mode implies a separate con-
troller variant for the visualisation/feedback item in question, or a composite controller
capable of handling both (implementation choice).

Table 3: Ul integration modes

Mode Nature

Description

Active Client side VIZ Controller obtains visualisations from client side imple-

mentations. Allows for interactive visualisations, but requires
modern, unconstrained web browsers.

Passive Server side VIZ Controller obtains visualisations in image form, generat-

ed server side. Works on constrained/legacy browsers or
report generation scenarios.

The JIT and VIZ components are driven by data from the portfolio system and the stu-
dent model. As these are separate entities (cf. deliverable 3.6 on the overall system ar-
chitecture), the nature of the composed system is distributed. As it is a goal (cf. 2.2.1) to
be able to apply JIT/VIZ modules independently of portfolio system and SM implementa-
tion, an architectural choice of isolating integration logic in a server side component is
made. As a consequence, the JIT/VIZ client side logic can be simplified and focused on its
primary responsibility, without dealing with details about how specific data for visuali-

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

sations and feedback items is provided by the concrete portfolio system and student
model of a particular deployment.

The JIT/VIZ APIs uses a network-based application architecture, and is specifically
based on the REST [1] architectural style. HTTP is the applied application protocol,
transported over TCP/IP, with at least JSON [2] being supported for resource represen-

tations.

This is illustrated in the following component diagram:

JIT/VIZ API |

VIZ DataSource API

o

|GET

JIT DataSource API VIZ Rendering API
GET/POST | GET

«rest interface»
JIT/VIZ Router

Table 4: API integration interfaces

Interface

VIZ
DataSource

JIT
DataSource

VIZ Rendering

Nature

Read

Read/Write

Read

Figure 5: JIT/VIZ API endpoints

Responsibility

Provides data series for consumption by concrete visual-
isations. Data sources do not directly reflect the underly-
ing data sources (e.g. portfolio system repository) but
expose data series relevant to a particular class of visual-
isation. Data sources must be configured for a particular
deployment of the system.

Provides action sets (e.g. “Take assessment”) for con-
sumption by concrete feedback implementations. Data
sources (e.g. “What should I do next?”) must be config-
ured for a particular deployment of the system. Optional-
ly supports receiving notification from a JIT controller
about a particular action taken by the user, in the event
that the SM integration needs to be notified outside the
SM-portfolio system integration.

Provides optional off-client rendering support for visual-
isations that cannot be handled natively for a particular
client type (cf. passive mode in Table 3).

0 WATCHME

Workplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

3.2.1 DataSource APlIs

The responsibility of the JIT/VIZ DataSource API is to provide a uniform data source ab-
straction for, and at the same abstraction level as, the JIT and VIZ modules, mapping
those to concrete repositories of data in a given deployment, such as EPASS and SM.

The actual layout of the requests and responses is not specified in this deliverable, al-
though it is specified that the information will have JSON representations.

VIZ DataSource
The API should be able to supply the following kinds of information.

* Information about a specific student (e.g. assessments by self and others)

* Group-level information (e.g. students in a specific class or year, or for a particu-
lar subject)

¢ Aggregated information (e.g. average scores of students for a given EPA and time
period)

JIT DataSource

The JIT API enables an interactive environment through which a list of currently rele-
vant feedback messages for the user, based on her student model, can be presented.
Feedback messages can be actionable and acting on suggestions can update the state of
the student model, either indirectly through triggering an action in the portfolio system
that leads to new/updated data being transmitted to the student model through its port-
folio system integration, or directly through notifying the student model API that a given
action was taken.

From a behavioural perspective, the general flow of this integration is illustrated in the
sequence diagram of Figure 6, below:
o

External Datasource
=
}

|
select interactive task—¥,

L submit task parameters—p

query response requirements

query required data—p>
task data

create response

]

|

|

|

|

|

|

|

|

|

|

: < task data
|

|

|

| ¢
|

|

: rank responses by relevance
|

| <
|

K= — — - task response — — —
|

Figure 6: Behavioural view of feedback interaction

I
|
|
I
|
|
I
|
|

query required data—p!
|
|
L
|
>
|
I
|
|
|
|
|
|
I
|
|
I
|
|
|

10

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education
Deliverable 5.1: Description of integration of systems and components
In the optional case of the JIT controller needing to directly notify the SM of the action taken (cf. JIT DataSource in

Table 4 above), the interaction would be extended by the act of the user selecting a task
response on the JIT Canvas triggering a notification to the JIT Controller, which will send
a message to the SM via the data source.

The following scenarios exemplify the kinds of interactions provided by this API:

Scenario 1: On what competency should I focus next?
For this scenario, there are several possible actions:
a. Display the list of competencies, ranked by the lack of performance in a certain
discipline. The following steps are required to display this action:

i. Query the SM for all the available competencies;

ii. c @ competencies, query the SM for the performance indicator of c

iii. Rank and select top n competencies by the lack of performance

iv. Compile and display the list. Selecting an item from this list will trigger

a portfolio system action (e.g. review the selected competency).
b. Display the graph of performance, per competency. This selection will trigger a
VIZ action.
c. Review your portfolio today. This selection will trigger a portfolio system ac-
tion.
d. Do something else. This selection will trigger a JIT action.

Scenario 2: What should I do next?
For this scenario, there are several possible actions:
a. Review your portfolio today. This selection will trigger a portfolio system ac-
tion.
b. Review the positive feedback received from your supervisor. (Active if positive
feedback has been received in the last n days). Query SM for positive feedback.
This selection will trigger a portfolio user action.
c. Review the negative feedback received from your supervisor. (Active if negative
feedback has been received in the last n days). Query SM for negative feedback.
This selection will trigger a portfolio user action.
d. Update or create a self-assessment form. (Active if no self-assessment has been
received in the last n days). This selection will trigger a portfolio user action.
e. Display the global overview graph. This selection will trigger a VIZ action.
f. Display the list of competencies, ranked by the lack of performance in a certain
discipline. This selection will trigger a portfolio user action.
g. Display the graph of performance, per competency. This selection will trigger a
VIZ action.
Review your portfolio today. This selection will trigger a portfolio user action.
Do something else. This selection will trigger a JIT action.
Etc.

11

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

The responsibility of the VIZ Rendering API is to render server side visualisations (i.e.
the passive mode of integration described in Table 3 of section 3.1). It is stateless and
able to respond with a static image, given relevant parameters. That image can then be
used as the source of e.g. an HTML element in the client web page, or consumed
by native image components on e.g. mobile devices. As a result, there will be no further
user interaction. This is required to support clients with little or no JavaScript or SVG
capabilities, such as older mobile browsers or historical versions of Internet Explorer.

As a minimum, the Portable Network Graphics (PNG) image format must be supported
(MIME type image/png) [3].

Authentication and authorisation are already concerns on the portfolio system. With JIT
and VIZ being embedded into the portfolio system’s user interface, it is natural to propa-
gate authentication and authorisation concerns for the JIT/VIZ modules to the portfolio
system as well.

The JIT/VIZ APIs do not communicate actively with the portfolio system to achieve this,
but delegate the responsibilities to the portfolio system API and SM API with which they
integrate.

After authenticating a user in the hosting portfolio system, it will pass an opaque session
context to the components embedded within it. This context, validatable by the portfolio
system, will propagate, as a token passed to the JIT/VIZ controllers, to all requests made
against the JIT/VIZ API interfaces. From there, propagation continues to the underlying
portfolio system and SM APIs (in the latter case, propagation continues to the portfolio
system), where the token is ultimately verified through the portfolio system’s Privacy
Manager to ensure that requests being made against them are allowed in the given con-
text (authorisation).

Since the token might expire between the time it is issued by the portfolio system and its
first use, the JIT/VIZ API should recognise this, and return a “token expiry” result back to
the JIT/VIZ controller, which can then signal the user to refresh the page (or take other
measures, if available, for obtaining a fresh token). Similarly, controllers must be pre-
pared to handle authorisation errors, and communicate these to the user.

Information privacy is handled at the transport level (i.e. by TLS/SSL).

There are two major categories of components in JIT/VIZ ecosystem: client-side Ul com-
ponents and server-side REST API resources. The latter category constitutes the JIT/VIZ
API and will be consumed solely by the UI controllers of the former category.

This section maps the logical concepts of section 3.2 to concrete REST resources.
12

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Figure 5 (section 3.2) illustrated 3 logical surfaces of the JIT/VIZ API: JIT DataSource
API, VIZ DataSource API and VIZ Rendering API. The two DataSource APIs serve the
same purpose of acting as glue between a module and data from an underlying API. As
they are logically without intersection (JIT and VIZ modules can exist independently),
they are mapped to two distinct resource paths in the JIT/VIZ API. Authorisation is han-
dled by these underlying systems; for this an authentication token is propagated.

The VIZ Rendering API can be regarded as merely a different resource representation of
a visualisation, and is therefore mapped to the same resource path as the VIZ Data-
Source APL.

The JIT resources of the JIT/VIZ REST API interface are consumed solely by client-side
JIT widgets. Upon request, the SM API is interrogated and a JSON serialisation of feed-
back and actions for the current student is provided.

The available resources are described next.
/API/JIT/Questions?AuthToken={AuthToken}&{Parameters}

Used to obtain all questions available in JIT. Ul will need these to offer a selection to the
end users.

GET Method:
- Resource Parameters:
o Questions: the just-in-time feedback questions.
- Query Parameters:

o AuthToken: represents the authentication token passed on for each re-
quest,

o Parameters: any relevant parameters for JIT process (Optional).

- Available responses:

o 200 (OK) - JSON; List with all possible questions.

o Error: through standard 4xx (e.g. 400 Bad request, 404 Not found, etc.)
and 5xx (e.g. 500 Internal Server Error etc.) HTTP status codes [4] which
will indicate that either the client input was incorrect or that the server
computations faulted.

/API/JIT/Feedback/QuestionId?AuthToken={AuthToken}&{Parameters}

Used to query update the JIT system for actions to a specific question chosen by the user.
Also optionally allows for notifying JIT directly that a particular action was taken.

13

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

GET Method:
- Resource Parameters:

o Feedback/Questionld: resource that represent the list of actions to a spe-
cific question identified through QuestionId.

- Query Parameters:

o AuthToken: represents the authentication token passed on for each re-
quest

o Parameters: Identification of action taken

- Available responses:

o 200 (OK) - JSON; Gathered response from SM (in form of actions to be
taken).

o Error: through standard 4xx (e.g. 400 Bad request, 404 Not found, etc.)
and 5xx (e.g. 500 Internal Server Error etc.) HTTP status codes [4] which
will indicate that either the client input was incorrect or that the server
computations faulted.

POST Method:
- Resource Parameters:

o Feedback/Questionld: resource that represent the list of actions to a spe-
cific question identified through Questionld.

- Query Parameters:

o AuthToken: represents the authentication token passed on for each re-
quest

o Parameters: Additional parameters that might be needed for each particu-
lar question (Optional).

- Available responses:

o 200 (0K)

o Error: through standard 4xx (e.g. 400 Bad request, 404 Not found, etc.)
and 5xx (e.g. 500 Internal Server Error etc.) HTTP status codes [4] which
will indicate that either the client input was incorrect or that the server
computations faulted.

The Visualisation API will be a REST [1] API interface consumed solely by client-side
visualisation widgets. Upon request, the EPASS (and potentially SM) API is interrogated
and a JSON serialisation of the information necessary for the visual widget (static or in-
teractive version) to render properly.

Visualisation API will support only a single REST verb: GET
/API/Visualizations/{VisualizationType}?AuthToken={AuthToken}&{Parameters}

GET Method:
- Resource Parameters:
o VisualizationType: represents the widget type that will be supported by
the VIZ implementation

14

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

- Query Parameters:

o AuthToken: represents the authentication token passed on for each re-
quest,

o Parameters: the configuration parameters that might be needed by each
particular visualisation (may consist in visual information like: width,
height, xAxisLabel, zAxisLabel etc. or any other settings).

- Available responses:

o 200 (OK) - JSON; Necessary information for the widget to be properly
rendered.

o Error: through standard 4xx (e.g. 400 Bad request, 404 Not found, etc.)
and 5xx (e.g. 500 Internal Server Error etc.) HTTP status codes [4] which
will indicate that either the client input was incorrect or that the server
computations faulted.

For each visualisation request, the Visualisation API will start a workflow with the fol-
lowing actions:

1. Access EPASS API and retrieve the appropriate data, passing on the authorisation
token (plus any other contextual information), in order to get the necessary portfolio
data.

2. Aggregate the received data according to the visualisation type that was requested.

In this phase the received data should be adapted to simple series of tuples ready to
be used in the visualisation process.

3. Build the visualisation response.
Visualisation widget rendering can either be done on client-side or on server-side.
For client-side rendering the VIZ API should provide only the necessary series data
and the client-side logic should handle the rest.
Server-side rendering comes with a performance gain for low-end clients or clients
without advanced rendering capabilities at the cost of rich and interactive graphical
display.

Taking into account the different ways in which the widgets might be rendered on the
client side, the API response may contain one of the following:

* Serialised JSON data only, that will be used directly on client side,

* HTML/]S code built on the server side that may be used directly on the client,

¢ Static image which may represent directly the requested visualisation.

HTTP content negotiation (specifically Accept/content-Type headers) is used to desig-
nate the desired type of representation.

15

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Figure 7 shows a concrete application of the tiering described in Figure 2 of section 3, in
the context of the web-based portfolio management system EPASS, accessed through a
desktop or mobile web browser.

Presentation tier |
«html.js» @ «html/js» g]
EPASS Ul |~ JITIVIZ Ul
Vi
-]
/ |
/ |
/ |
Logic tier | 7 :
V4 v
«js api» «rest api»
JIT/VIZ Client T T =] JITIVIZ Server
Side Logic Side Logic
I
]
|
|
|
Data tier | :
|
«rest api» @ «rest api» @ «rest api»
EPASS API - —— JITIVIZ = SM API
DataSource API

Figure 7: Logical view of integration architecture as applied to EPASS

Similarly, Figure 8 below shows a concrete instance of the logic deployment perspective
from Figure 3, in the context of EPASS as hosting portfolio system.

16

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Web Server
«html.js» @ «html/js» @
EPASS UI RN JIT/VIZ Ul
1T~ - Web Server
] [~ ~
\:/ «rest api»
JITIVIZ Server
«rest api» @ «js api» @ Side Logic
EPASS API JITIVIZ Client
Side Logic - — i
~
< ———__ T~ Vv
T ~\ «rest api»
———__ JITviz
~ = - — —| DataSource API
- - - -
Web Server _ -
«rest api» =4
SM API

Figure 8: Deployment view of integration architecture as applied to EPASS

An actual deployment may choose to separate or consolidate the web server instances
onto one or several physical instances, e.g. to address scalability or to decouple deploy-
ment dependencies. Cross Origin Resource Sharing (CORS) [5] can be applied to enable
cross-domain communication from the browser, in deployments where EPASS and APIs
do not reside on the same internet domain.

To include the JIT/VIZ modules in EPASS, EPASS will add DIV elements to the pages
when it’s generated at server side. These DIV elements will act as placeholders for code
generated by the JIT/VIZ modules. The HTML inside the DIV elements will be generated
through JavaScript code included from the JIT/VIZ modules. EPASS will also include a
CSS file containing the core styling needed for the JIT/VIZ module. The EPASS API will
produce links for portfolio actions as described in scenario 2 (section 3.2.1).

EPASS will include one or more controller JavaScript files from the JIT/VIZ module,
which should provide functions to display the visualisation or feedback. These Java-
Script functions should be able to accept parameters (e.g. user hash, the type of visuali-
sation, the question to be answered by the feedback, etc.) and communicate with the
JIT/VIZ REST API using CORS.

17

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Figure 9 illustrates the embedding of JIT/VIZ controls into an EPASS webpage:

«screen» X
Portfolio System

embedded JIT/VIZ canvas

embedded JIT/VIZ controls

Figure 9: Embedded JIT/VIZ controls/canvas in an EPASS webpage

As applied to EPASS, the structural view of this integration (the general form of which
was shown in Figure 4) appears in Figure 10 below.

18

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

«html/js»
VIZ Control

+ parameters

«CSS»

+ class
+ id
0.*
«javascript» «html div»
VIZ Controller VIZ Canvas

«html»
EPASS Page

+ parameters + parameters
0.*

«javascript» «html div»

JIT Controller JIT Canvas

+ parameters + parameters
0.*
«html/js»
JIT Control

+ parameters

«CSS»
+ class
+ id

Figure 10: Structural view of Ul integration architecture as applied to EPASS

From a behavioural perspective, the sequence diagram of Figure 11 illustrates how the-
se artefacts are tied together during a page load in EPASS:

19

N WATCHME

Workplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

X X X

end user Web Browser Web Server
| | |
| navigate to EPASS page() > | |
M |
ret:uest web ﬁ?gﬁg) g
return page htm
<_ ______________________
-
request JIT/VIZ controllers() > |
return javascript|
o _____ emjavasript)]
|
request JIT/VIZ stylesheets() >
return c
e ____rewmes)]
«event» on page loaded()

scan DOM for JIT/VIZ canvases():
0

canvasdivs and parameters

i instantiate JIT/VIZ controllers for canvases()

scan DOM for JIT/VIZ controls()

i wire JIT/VIZ controls to canvas controllers()

—_————e e e e e — — — A

Figure 11: Behavioural view of EPASS Ul integration

An example HTML skeleton page embedding a visualisation is provided in the following
code snippet:

<html>
<head>

<script type="text/javascript" src="watchme viz.js" />
<link rel="stylesheet" type="text/css" href="watchme viz.css" />

</head>
<body>

<div id="student cohort spiderchart"
class="viz spiderchart"
data-source="API-DATASOURCE"
data-mode="filled"

/>

<script type="text/javascript">
watchme.viz.init () // Instantiate controllers & wire controls

</script>

</body>
</html>

20

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

EPASS will provide a REST-based API exposing relevant (e.g. competencies and assess-
ment time series), and potentially aggregated (e.g. cohort averages) data to the JIT/VIZ
API. As minimum, resources can be represented in JSON format.

The API will accept and verify a client token parameter to ensure that a request is al-
lowed in the current context.

For details about the EPASS API, the reader is referred to deliverable 3.2 on the general
architecture.

This section provides a high-level outline of the SM perspective on the JIT/VIZ API inte-
gration. Refer to deliverable 4.1 for a more detailed description.

According to deliverable 4.1, the preliminary concepts regarding the Student Model API
include several components:

¢ External Student Model API - which is used to link the SM to the EPASS and
JIT/VIZ APL. This API is described in the next sections of this deliverable.

* Data (pre- and post-) Processing Module - used to communicate with the stu-
dent model external API and convert the data from/in internal student model
structures. This component will be described in more detail in deliverable 4.2.

* Bayesian Student Model - comprises the domain and individual student mod-
els. The structure of this component will be described in more detail in delivera-
ble 4.2.

¢ Student Model Database - could potentially store the student models and dif-
ferent parameters required at runtime. The component will be described in more
detail in deliverable 4.2.

Figure 12 presents the interaction between the Student Model API and different internal
and external modules.

Bayesian | Pre-P[:jz:ssinE < _ EPASS 2]
Student Model k. Modul J S |~ - External API
\ Eems ~ Student 3 | K
T \ Model
I \ o External APl K
L \ //
\
Student 2 e Post-ll’)r:?essir?:l L7 o~ =~ iz <
Model Database J External API
Module

Student Model Server

Figure 12: Student Model API component diagram
21

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Preliminary notes
e The Student Model External API will use a RESTful API
o EPASS can push and query data from the SM: HTTP GET, POST and DELETE
e VIZ module can query, filter or aggregate student model output: HTTP GET
e JIT module can query, filter, aggregate or post data: HTTP GET and POST
e JIT/VIZ modules use a common layer to communicate with the Student Model

API description
The SM would expose 2 methods corresponding to different operations:
1. Query data, which can be used to retrieve the latest image of a given data type for
a certain student or cohort of students. The query API specifies the student
and/or group, domain and the required data.
2. Post data, support several operations (i.e. Update, Replace, Rollback or Delete).
These operations correspond to different functions supported by the SM.

Authorisation and Privacy Management will be kept by EPASS, by using existing APIs.

More details regarding the SM API are provided in the architecture design document of
deliverable 3.2.

22

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

Deliverable 5.1 has served as catalyst for achieving alignment between the technical
partners of the WATCHME project with regards to the architecture and overall design of
the integration between the JIT and VIZ modules, the SM module and a hosting portfolio
system such as EPASS, within the constraints imposed by these respective subsystems.

The present document has captured the central decisions and models, while leaving
open enough details to accommodate the individual needs of requirements as they are
being progressively elicited, and will form the foundation upon which the actual JIT and
VIZ implementations will later be realised.

The architecture of the JIT and VIZ modules fit within the larger context of the general
WATCHME system architecture. This is described in more details in deliverable 3.2

The JIT/VIZ API integrations rely on the EPASS and SM APIs. The external interface of
both are described in more detail in deliverable 3.2.

Implementation details of the actual data fields and JSON representation of the JIT/VIZ
data sources are described in deliverables 52 (JIT) and 5.4 (VIZ).

23

orkplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

[1] R. T. Fielding, “Representational State Transfer (REST),” 2000. [Online]. Available:
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[2] Ecma International, “The JSON Data Interchange Format (ECMA-404),” October
2013. [Online]. Available: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf.

[3] W3C, “PNG (Portable Network Graphics),” [Online]. Available:
http://www.w3.org/Graphics/PNG/.

[4] IETF, “HTTP 1.1 RFC2616 Client Error 4xx, Server Error 5xx,” [Online]. Available:
https://tools.ietf.org/html/rfc2616#section-10.4,
https://tools.ietf.org/html/rfc2616#section-10.5.

[5] W3C, “Cross-Origin Resource Sharing,” 2014. [Online]. Available:
http://www.w3.org/TR/cors/.

Table 1: GIOSSATY Of LEIIMNScvuireriescereersrrsrss s 3
Table 2: Responsibilities of main Ul integration artefacts ... 8
Table 3: Ul INtegration MOAES. ... ssssssssssssssssssssssssssssssssssssssesssesssssssssasens 8
Table 4: AP integration INterfaces ... 9
Figure 1: Overview of WATCHME system landSCapecemmemenesnsssessssssessssssssssessens 3
Figure 2: Logical tiered view of integration architecture ... 5
Figure 3: Logical deployment view of integration architecture...........ns 6
Figure 4: Structural view of Ul integration architeCture.........neesenns 7
Figure 5: JIT/VIZ AP] @NAPOINTS....ciiiimrrrerirsissesssesssssssssssssssens 9
Figure 6: Behavioural view of feedback interaction ... 10
Figure 7: Logical view of integration architecture as applied to EPASS........cccoinceneenn. 16
Figure 8: Deployment view of integration architecture as applied to EPASS.......cccneenn. 17
Figure 9: Embedded JIT/VIZ controls/canvas in an EPASS webpagecccconenmirineereenneenns 18
Figure 10: Structural view of Ul integration architecture as applied to EPASS................ 19
Figure 11: Behavioural view of EPASS Ul integrationeesesssssesssesssessssenns 20
Figure 12: Student Model API component diagrameemrssssesssssessssssesssenns 21

24

Q WATCHME

Workplace-based e-Assessment Technology for Competency-based Higher Multi-professional Education

Deliverable 5.1: Description of integration of systems and components

10. History of the document

10.1 Document history

Version Author(s)

Mads Troest
Mads Troest
Mads Troest
Mads Troest
Steen Lehmann
Mads Troest
Ovidiu erban
Netrom

Rik Wijnen
Ovidiu Serban,
Jaime Costa,
Atta Badii,
Dan-iel Thiemert
Netrom

Mads Troest
Mads Troest

Ovidiu Serban

Mads Troest
Mads Troest

Date

2014-09-26
2014-10-10
2014-10-17
2014-10-31

2014-11-14

2014-11-18

2014-11-21
2014-11-24
2014-12-08

2014-12-16
2014-12-16

Changes

Initial structure and content

Feedback from draft 0.1 incorporated
Feedback from draft 0.2 incorporated
Elaborated S3, extracted some content to S5
Elaborated S3.3

Feedback from draft 0.4 incorporated
Contributed JIT scenarios to to S3.2.3
Contributed S4

Contribution to S5.1

Contributed SM API overview to S6

Updated API descriptions in S4.1.2 and S4.1.3
Updated S3.3

S2.3 (Scope) merged with S2.2 (Background)
S3 restructured

S4 restructured, terminology aligned with S3
Updated figures 2, 3 and 7 (Netrom feedback)
Fixed references

Contributed sequence diagram to S3.2.3
Updated SM API overview in S6

Incorporated feedback from UoR review
Incorporated feedback from UM review

10.2 Internal review history

Internal Reviewer
Daniel Thiemert (UoR)

Jeroen Donkers (UM)

Martijn Holthuijsen (Mateum)
Rik Wijnen (Mateum)

Date
2014-12-09

2014-12-16

2014-12-16

Comments

Minor corrections and clarifications needed,
proof-read the document

Corrections on deliverable numbering
Suggestion on EPASS integration

Reviewed document

25

