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THE WATCHME STUDENT MODEL

« Student Model = A representation of the variables and their relations
that play arole in a (workplace-based) learner (e.g., performance level,
motivation, consistency).

« We use a Bayesian network for this representation. It is grounded in
classical probability theory and allows us to predict the inner state of a
student on the basis of observed evidence.

« The type of Bayesian network we apply is called Multi-Entity Bayesian
Network, which makes it possible to take the student’s particular
context into account, and allows a more clear way of defining the
model.
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THE WATCHME STUDENT MODEL

* As input, our model uses e-portfolio content (e.g., assessments,
scores), or findings generated from the content (e.g. a sudden drop in
scores)

« The output are posterior probability tables for the variables, given the
observed. (e.g., p(motivation=high)=0.7, p(motivation=low)=0.3)

« This output is used for presenting appropriate messages to students or
their supervisors. (e.g., if p(motivation=low) > 0.5 display: “Please
contact your mentor to talk about your study progress”)
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THE WATCHME STUDENT MODEL

* In WATCHME we produced two different student models that are used in
parallel:

« The PERFORMANCE MODEL takes the assessment scores directly from
the portfolio and tries to estimate the true present level of performance.
It does this per EPA and per performance indicator in the EPAs. It also
takes a few narrative feedback fields into account, that are translated in
a sentiment level.

« The PEDAGOGICAL MODEL concentrates more on the behavioural and
meta-cognitive aspects. In this presentation, we will concentrate on this
second model.

STUDENT MODEL EXPLAINED @



DESIGNING THE MODEL

 Before building the pedagogical model, we needed to decide on what
variables to include in the model.

« Weinterviewed 12 scholars involved in workplace-based learning on
what educational theories and concepts that are linked to this area.

 From the interviews, a mind-map was created that interlinks all terms
and theories mentioned in the interviews
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DESIGNING THE MODEL

 From this mind-map, we selected 5 themes, which we judged to be
feasible to implement into the student model on the basis of e-portfolio
content.

« The five selected themes are:

Feedback seeking behaviour

“Frustration alert”

Completeness of information

Portfolio consistency

Need for feedback (currently not implemented)

« We discussed the themes with representatives from each of the three
WATCHME application domains for further details and refinement
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BUILDING THE MODEL

* In a Multi-Entity Bayesian Network, each of the themes is represented
by what is called a “knowledge fragment”. Such a fragment contains the
variables that are important in that theme and defines the probabilistic
relations between them.

« Each knowledge fragment contains input variables that either are fed
with evidence from the portfolio, or that can come from other
knowledge fragments

« Each knowledge fragment contains output variables

* Intermediate variables can be used to define more complicated relations
between input and output.

« Afragment also has parameters that dictate when and how and how
often the fragment is applied

« Thetool UnBBayes was used to build and run the model
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BUILDING THE MODEL

( ) Each variable has a
ScoreHastpped(t) ags N
probability function
( JeageChangE ) connected to it:

portfolinConsistency)

changelnPartfaliog)

ifanyt have ( portfolioConsistency=InconsistencyHioh &
changelnPortfolio=significantChange) [

SupervsarMoodChangedt) )
ifany tprev have ( isFrustrated = FrustrationHigh)[ FrustrationHigh =0.95,
FrustrationLow = 0.05]
else [ FrustrationHigh = 0.8, FrustrationLow=102]

Jelse [if anyt have { portfolioConsistency=InconsistencyHioh &

) ' changelnPortfolio=mildChanaoe) [

if any tprev have ({ isFrustrated = FrustrationHigh) [ FrustrationHigh=0.7,
FrustrationLow =0.3]
else [ FrustrationHigh = 0.6, FrustrationLow=041]

\ iSFrustrateditpres)

isFrustratedit)

] else [if any t have ( porfolioConsistency=InconzistencyHigh &
changelnPortfolio=noChanoe) [

The knowledge fragment for “Frustration alert”

ifany tprev have { isFrustrated = FrustrationHigh) [ FrustrationHigh=0.2,
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RUNNING THE MODEL
S B

After add|ng eV|dence feedhackSeekingStrategy__T isFrustrated_ T0
FESEEKING_GOOD 4% FrustrationHigh B.5%,
to the model, the model FBSEEKING_POOR _ 35% FrustrationLow 93,50 L
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can be queried, e.g.
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GETTING THE EVIDENCE

» To fill variables like “scoreHasDropped(t)” we need to extract this
information from the e-portfolio

« We created a series of statistical functions that take the assessments
from the portfolio (with the time points of the assessment) and
determine for each of the time if, for instance, a drop in score can be

detected
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TUNING THE MODEL

« The model and the finding-generating functions contain many
parameters that need to be tuned.

« Some parameters can be deduced from literature, but most of them
need to be fine-tuned to the application domain.

« We took a set of anonymized historical portfolio data to tune the
WATCHME model. It did not include EPAs, so competencies were used
instead.

* First, the parameters for the finding-generating functions were tuned so
that not too many but also not too little findings where detected.

« Then we ran the student model for all portfolio’s in the set for all points
in time and inspected the model output.

 This resulted in some changes in probability functions.
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Findings per week for one student
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Output of student model for one student
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THE PROOF OF THE PUDDING...

« Tuning the model and the parameters on the basis of historical data is
necessary, but only the starting point

 The field-experiments in WATCHME are about to start
* Retuning of parameters might be needed along the ride

+ Research questions:

- Exact phrasing and timing of feedback-messages is important and context
dependent. What is the best for this situation? What other communication
Is possible, e.g. what visualisations could be used?

+ Will students change their behaviour on the basis of output generated by
the model?

- What other elements can be included in the model?
* In what contexts and circumstances does such a model work best?
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